Two-stage portfolio optimization with higher-order conditional measures of risk
نویسندگان
چکیده
OF THE DISSERTATION Two-Stage Portfolio Optimization with Higher-Order Conditional Measures of Risk by Sıtkı Gülten Dissertation Director: Dr. Andrzej Ruszczyński In this study, an application of novel risk modeling and optimization techniques to daily portfolio management will be described. In the first part, I develop and compare specialized methods for scenario generation and scenario tree construction. The quality of multi-stage stochastic optimization models depends heavily on the quality of the underlying scenario model. First, multivariate GO-GARCH model is used to generate adequate number of scenarios. Then, five different methods, a multi-facility location based backward scenario tree generation method, and forward and backward modified K-Means and Two-Step Cluster methods are used to generate scenario trees. Next, these five methods are tested on two-stage portfolio problems with different number of scenario sets. Finally, a Monge-Kantorovich transportation model is developed to compare the probability distribution of the GARCH-generated scenarios with the probability distribution in the constructed scenario trees.
منابع مشابه
Optimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals OR
دوره 229 شماره
صفحات -
تاریخ انتشار 2015